Week 8 — Web
Application
Hacking

Web Application
Security lesting
Tools

Web Application Security
Testing Tools

- Two types of security testing tools:
- Active: send out requests and test for vulnerability

E.g. Web application security scanners

- Passive: Intercept, manipulate or listen to web traffics, and detect for
E.g. Web proxies

- May need specific tools in different environment

- Caution!
- No tools are 100% safe

- Applications may not behave normally in security testing due to the their bugs,
flaws or special feature / logical flow

- Be extra careful when testing in production environment

Using staging / testing environment, if available, is good for both application owner and security tester

10/30/2015 Copyright © Ricci IEONG for UST training 2015

w3af (1)

- Automatic web application scanner

- In both CLI and GUI
- Open Source

- Website: http://w3af.sourceforge.net/

Y) w3af

Web Application Attack and Audit Framework

10/30/2015 Copyright © Ricci IEONG for UST training 2015

http://w3af.sourceforge.net/

w3af

wHar = moth

Profilas Tools Configuration Help

i .Y] i

Wizards New Save Stop Pause Multiple

Scan :mﬁg| Leg |Resuua |Explmt |
& vulnerabilities @ Information & Error

LIS US UEL S0 AU W UL PV AR | INEW LR G I Uy WeLI DRI Peugin:
[Tue 0% Oct 2010 07:30:14 PM ART] Mew URL found by webSpider plugin:
[Tue 05 Oct 2010 07:30:14 PM ART] Mew URAL found by webSpider plugin:
[Tue 0% Oct 2010 07:30:14 PM ART] New URL found by webSpider plugin:
[Tue 05 Oct 2010 07:30:14 PM ART] New URL found by webSpider plugin:
[Tue 05 Oct 2010 07:30:14 PM ART] Mew URL found by webSpider plugin:
[Tue 05 Oct 2010 07:20:14 PM ART] New URL found by webSpider plugin:
[Tue 05 Oct 2010 07:30:14 PM ART] New URL found by webSpider plugin:
[Tue 05 Oct 2010 07:30:14 PM ART] New URL found by webSpider plugin:
[Tue 05 Oct 2010 07:30:14 PM ART] New URL found by webSpider plugin:
[Tue 05 Oct 2010 7:30:14 PM ART] Mew URL found by webSpider plugin:
[Tue 05 Oct 2010 07:30:14 PM ART] New URL found by webSpider plugin:
[Tue 05 Oct 2010 07:30:14 PM ART] New URL found by webSpider plugin:
[Tue 05 Oct 2010 G7:30:14 PM ART] New URL found by webSpider plugin:
[Tue 0% Oct 2010 07:30:14 PM ART] MNew UAL found by webSpider plugin:
[Tue 05 Oct 2010 07:30:14 PM ART] New URL found by webSpider plugin:

4§ >

i;‘ T

Manual Request Fuzzy Request Encode/Decode Export Request Compare

FILLE yE DIULE R T _SELUr Ly W Il)
httpymethymed_securityfw3af/audit/xss/simple_xss_no_js php
http:imothimod_securityjwivet/

httpyimothiphp-idspa3afy
http:yrmothyphp-idspw3afrauditpess/simple_xss php
http:imothjphp-idspwivets

http:jimathyphpinfe php

http:imothipythen_test/

http:yrmothirebots.tt

http:imothfsitegeneratory

http:imothfstemap.xml
http:imothfvulnerable-java-web-applications/struts-examples-1.1f
http:/fmothfvulnerable-web-applications/

http:jimothfw3af)

http:/jmothjwiafjdefault .css

httpmothjwivet]

Q

et e e e e e e

Discovery progress: 22.17 % - ETA: 00d 00h 04m 02s

Funning discoverywebSpider on http:ymoth/php-idspw3alf | Method: GET,

ulns
Infas = I
Debug 1 T T T T r T T T T [5]
0.00 10.50 21.01 31.51 42,12 52.62 63.13 73.74 84.24 94.74
Resuming the scan.., @210 Aas mo

10/30/2015

Copyright © Ricci IEONG for UST training 2015

Fiddler (1)

“Web debugging proxy” — mainly a passive security testing tool

Allows user to intercept and manipulate data

Easily Extendable — you can write your own plugins for enhancement

Website: http://www.fiddler2.com/fiddler2/

10/30/2015 Copyright © Ricci IEONG for UST training 2015

http://www.fiddler2.com/fiddler2/

Fiddler

72 Fiddler - |

[)

File Edit Rules Tools View Help StresStimulus S Donate ContentBlock
Q +3 Replay X - b Resume ' Stream ;ﬁ% Decode | Keep: All sessions - @Any Process 34 Find Save @ e Browse @ Clear Cache =
e << 1| &) stresstimulus | O Watcher I a KESJ_ Diiffer I %] Gallery

Result Protocol Host URL “|| rules | S Fidderseript | [Fiters | El tog | = Timeline

3 HTTP www.google.com.hk jcomplete fsearch?dient=hpahl=zh- @ Statistics i<5§ Inspectors | 4 AutoResponder | @ Composer
:%,z:;; 32 ﬁ :::z:::::::t j::ﬁx:’ij:r:;;:::f;zﬂ:g?_ Headers | Textiiew | SyntaxView | WebForms | HexView |
' . . . “hl=zn- =agq= l—
@40 200 HTTP people.mozilla.org jebsterne fcontent-security-policy der REPETER] | SR | Rty | T | i | 2= |
341 200 HTTP people.mozilla.org frbsterne fcontent-security-policy sty XML |
#) 43 200 HTTP people.mozilla.org /~bsterne fcontent-security-policy ftes| (GET http://www.google.com. hk/complete/search?clie
&) 44 200 HTTP people.mozila.org /~bsternecontent-security-policy ftes| Gg:ﬁ:—;ﬂ;’:\aﬁ% (Windows NT 6.1; WOWS4; r
E 45 200 HTTP people.mozilla.org jebsterne fcontent-security-policy ftes Accept: text/html,application/xhtml+xml,applicati
#1496 200 HTTP people.mozila.org /~bsterne/content-security-policy ftes| = iﬁﬁggE:;ﬁQﬁﬁ?ﬁ;j ;Q;:f’g:.ﬁ:ag'es
@) 47 200 HTTP people.mozila.org /~bsterne fcontent-security-policy /tes| ACCEpt—‘Ehaf_'SEti I150-8853-1,utf-8;9=0.7,*;9=0.7
*] 4z 200 HTTP people.mozila.org /~bsterne /content-security-policy ftes E?g,‘fg,’f:”ﬂgtkfep‘zﬂf"gu 1e. com. hk
@] 43 200 HTTP people.mozilla.org /~bsterne jcontent-security-policy ftes Cookie: PREF=ID=3d99e1ce55dbfefc:FF=0:TM=13316721
3 50 200 HTTP peaple.mozila.org /~bsterne fcontent-security-policy ftes ¥
#] 51 200 HTTP people.mozila.org /~bsterne fcontent-security-policy /tes| d lII C
3 52 200 HTTP people.mozila.org ~bsterne/content-security-policy/tes-—ly || Find... (press Cirl+Enter to highlight all) I Viewin Notepad I
3 53 200 HTTP people.mozila.org /~bsternefcontent-security-policy ftes
354 200 HTTP people.mozilla.org jebsterne fcontent-security-policy ftes Transformer | Headers | Textiiew | Syntaxiiew | ImageView ‘
¥] 55 200 HTTP people.mozilla.org jrbsterne fcontent-security-policy ftes HexView ‘ WebView | ViewState | WCF Binary | Auth |
[#] 56 200 HTTP people.mozila.org /~bsterne jcontent-security-policy ftes Caching | Cookies | Raw ||W| YML |
°) .)
B e e e e 550k, taviwer Oy e, 3 tedser O, o O lecon it
=) .)
el e kedirsie

: ' =<se>temple <fse> run

Asl 404 HTTP people.mozilla.org /~bsterne/content-security-policy ftes
Ele2 200 HTTP people.mozila.org /~bsterne/content-security-policy ftes =<sc>tempo</sc run android
@63 200 HTTP people.mozila.org /~bsterne/content-security-policy ftes <se>temple</se > run android
3 64 200 HTTP people.mozila.org /~bsterne fcontent-security-policy ftes
3 65 200 HTTP people.mozilla.org /~bsternecontent-security-policy ftes
3 &6 200 HTTP people.mozila.org /~bsternefcontent-security-policy ftes
@6? 200 HTTP people.mozilla.org /~bsterne fcontent-security-policy ftes
@68 200 HTTP people.mozilla.org /rbsterne fcontent-security-policy ftes
@69 200 HTTP people.mozilla.org /~bsterne fcontent-security-policy ftes
&7 200 HTTP people.mozilla.org /~bsterne/content-security-palicy/tes Tl | ¢ [t] 3

= Al Processes

1/81

»

Expand Al Object

http: /fwww.google.com. hk/complete fsearch?dient=hp&hl=zh-TW&gs_nf=18cp=28gs_id=218q=tefuxhr=t

Other web debugging proxies

- Paros

- ZAP

- Burp suit

- Ratproxy

- OWASP WebScarab

- etc

Features are quite similar: feel free to use your favorite one

10/30/2015 Copyright © Ricci IEONG for UST training 2015

Browser plugins

Manipulates the DOM or traffic in browser

Easy to use due to the integration of browsing experience

Both active and passive tools are available

Example in Firefox
- FireBugs
- HackBar
- WebDeveloper Toolbar
- etc

Using the “Developer Tools” in modern browsers is also a good idea

Alternatives also available in other common browsers

10/30/2015 Copyright © Ricci IEONG for UST training 2015

IMPORTANT
NOTES

10/30/2015 Copyright © Ricci IEONG for UST training 2015

BE ETHICAL!!!

Do’s and Don’ts

- DOo’s
- DO get written permission from the owner before performing any security tests
- DO stop at mutually agreed point of intrusion, if you can
- DO keep the vulnerability or other sensitive information carefully

- DP? report the information to the owner if you find some vulnerability “by
chance

- DO know your liability and rights

- Don’ts
- DON’T publish the vulnerability information without permission of the owner
- DON’T blackmail the owner with what you have
- DON’T think you won’t be traced and caught

You are warned! ©

10/30/2015 Copyright © Ricci IEONG for UST training 2015

Lab

WARM UP EXERCISE

10/30/2015 Copyright © Ricci IEONG for UST training 2015

OWASP Top 10

10/30/2015 Copyright © Ricci IEONG for UST training 2015

OWASP Top 10 Web Application
Security Risk (2007 version)

Open Web Application Security Projects (OWASP) defines Top 10 Web
Application Security Risks (2007 version):
> Al: Cross Site Scripting (XSS)

> A2:Injection Flaws

> A3: Malicious File Execution

> A4: Insecure Direct Object Reference

> A5: Cross Site Request Forgery (CSRF)

> A6: Information Leakage and Improper Error Handling
o A7: Broken Authentication and Session Management
> A8: Insecure Cryptographic Storage

> A9: Insecure Communication

> A10: Failure to Restrict URL Access

Source: https://www.owasp.org/index.php/Top_10 2007 OWASP

The Open Web Application Security Project

10/30/2015 Copyright © Ricci IEONG for UST training 2015

OWASP Top 10 Web Application
Security Risk (2010 version)

Top 10 Web Application Security Risk 2010 version:

o

o

o

Al:
A2:
A3:
A4:
A5:
Ab:
A7:
A8:
A9:

Injection

Cross-site Scripting (XSS)

Broken Authentication and Session Management
Insecure Direct Object References

Cross-site Request Forgery (CSRF)

Secure Misconfiguration

Insecure Cryptographic Storage

Failure to Restrict URL Access

Insufficient Transport Layer Protection

A10: Unvalidated Redirects and Forwards

Source: https://www.owasp.org/index.php/Top_10 2010

10/30/2015

Copyright © Ricci IEONG for UST training 2015

OWASP

The Open Web Application Security Project

OWASP Top 10 Web Application Security Risk
(2013 version)

Top 10 Web Application Security Risk 2013 release candidate version:

o

o

o

o

Al:
A2:
A3:
A4:
A5:
Ab:
A7:
A8:
A9:

Injection

Broken Authentication and Session Management
Cross-site Scripting (XSS)

Insecure Direct Object References

Secure Misconfiguration

Sensitive Data Exposure

Missing Function Level Access Control

Cross-site Request Forgery (CSRF)

Using Components with Known Vulnerabilities

A10: Unvalidated Redirects and Forwards

Source: https://www.owasp.org/index.php/Top_10 2013

10/30/2015

Copyright © Ricci IEONG for UST training 2015

OWASP

The Open Web Application Security Project

OWASP Top 10 Web Application
Security Risk (Trend)

Injection

2013 version

— Injection

2007 version Al-

A1 — Cross Site Scripting (XSS)
A2 — Injection Flaws
A3 — Malicious File Execution

A4 — Insecure Direct Object
Reference

A5 — Cross Site Request Forgery
(CSRF)

A6 — Information Leakage and
Improper Error Handling

A7 — Broken Authentication and
Session Management

A8 — Insecure Cryptographic
Storage

A9 — Insecure Communications

A10 - Failure to Restrict URL
Access

10/30/2015

// New —>

/

New

—

A2 — Broken Authentication and
Session Management

A2 — Cross Site Scripting

A3 — Broken Authentication and : oy
. A3 — Cross Site Scripting

Session Management

A4 — Insecure Direct Object

A4 — Insecure Direct Object References

References ; ; ; ;
A5 — Security Misconfiguration

A5 — Cross Site Request Forgery

(CSRF) A6 — Sensitive Data Exposure

A6 — Security Misconfiguration

A7 — Missing Function Level
A7 — Insecure Cryptographic Access Control

STRlEEE A8 — Cross Site Request Forgery
A8 — Failure to Restrict URL (CSRF)

Access A9 — Using Components with

New —Fnown Vulnerabilities

A10 - Unvalidated Redirects and
Forwards

OWASP

The Open Web Application Security Project

A9 — Insufficient Transport Layer
Protection

A10 - Unvalidated Redirects and
Forwards

Copyright © Ricci IEONG for UST training 2015

OWASP Top 10 &
Countermeasures

Al — INJECTION

Parsing

- The processing of converting text to data structure representing the object

1. Identify keywords in the string
2. Split the text strings into tokens and then arrange to the data structure (e.g. tree)

- Example:

SELECT * | FROM tablel = WHERE columl = X

10/30/2015 Copyright © Ricci IEONG for UST training 2015

Parsing with variables

If the target string (e.g. a SQL statement) contains variable...
1. Evaluate the variables

2. ldentify keywords in the string

3. Split the text strings into tokens and then arrange to the data structure (e.g. tree)

SELECT

10/30/2015

*

FROM tablel @ WHERE columl = ‘SXBCD’

Copyright © Ricci IEONG for UST training 2015

SX = ABCD

Problem...

- What if the string contain special “keywords”...?
1. Evaluate the variables

SX=ABCD’ OR ‘1'=1

2. ldentify keywords in the string

3. Split the text strings into tokens and then arrange to the data structure (e.g. tree)

SELECT * FROM tablel @ WHERE columl = f$XBCD’ OR 1" = ‘1

el

10/30/2015 Copyright © Ricci IEONG for UST training 2015

Injection Flaw

* Occur when untrusted data is sent to an interpreter as part of a
command or query. The attacker’s hostile data can trick the interpreter
into executing unintended commands or accessing unauthorized data

*Definition: Change of original semantic structure of by injecting special
characters to cheat the string parser

*Most common injections: SQL Injection

10/30/2015 Copyright © Ricci IEONG for UST training 2015

SQL Injection

*Example
* SELECT * FROM user_table WHERE username=‘Susername’ AND password=‘Spassword’;

* case (1): Susernmae - userA, Spassword = abc123:
* SELECT * FROM user_table WHERE username=‘userA’ AND password=‘abc123’;

* case (2): Susernmae = userA, Spassword = a’ OR “="
* SELECT * FROM user_table WHERE username=‘userA’ AND password=‘a’ OR “=";

* Injection!

10/30/2015 Copyright © Ricci IEONG for UST training 2015

SQL Injection

SELECT *

FROM user_table

WHERE
Username=‘userA’
AND password=‘a’
OR “=%;

Susername >

Spassword 2>

userA

al OR II=I

10/30/2015 Copyright © Ricci IEONG for UST training 2015

SQL Injection

Original:

SELECT FROM WHERE

| |

/\
/\ /\

Username password X

I I

10/30/2015 Copyright © Ricci IEONG for UST training 2015

SQL Injection

Injected: /

SELECT FROM WHERE
* tablel \
OR
/
/
AND

/N /N

Username ‘userA’ password a’

10/30/2015 Copyright © Ricci IEONG for UST training 2015

Stacked SQL statements

- Some SQL engine support “stacked” statements when running a query.
- E.g.

SELECT * FROM tablel; INSERT INTO tablel (column1) VALUES (‘1’);
is equivalent to running two queries separately

SELECT * FROM tablel;
INSERT INTO tablel (column1) VALUES (1’);

- The impact of SQL injection can be even more harmful

10/30/2015 Copyright © Ricci IEONG for UST training 2015

HI, THIS 1S

YOUR S0N'S SCHOOL.

WE'RE HAVING SOME
COMPUTER TROUBLE.

\%m

OH, DEAR - DID HE
BREAK SOMETHING?

IN HWA‘:’ /

St

Source: http://xkcd.com/327/

10/30/2015

DID YOU REALLY
NAME YOUR SON
Robert'); DROP
TABLE Students;-- 7

!

~OH. YES LUITTLE
BOBBY TABLES,
WE CALL HIM.

WELL, WE'VE LOST THIS
YEARS STUDENT RECORDS.
T HOPE YDURE HAPPY.
41 AND I HOPE
~~ YOUVE LEARNED
TO SANTIZE YOUR
DATABASE INPUTS,

Copyright © Ricci IEONG for UST training 2015

SQL Injection 101

- However, external parties (attacker and black box pen tester) may not
know the exact SQL statement used in the the application

- Question: How to find out a “correct” injection to the SQL statement?

- Possibilities:
1. Trial and error!
2. Testing some “magic” strings that usually works

‘ “_uo,

or “="; --
or 1=1;--
etc

3. By observing error messages returned by the applications

10/30/2015 Copyright © Ricci IEONG for UST training 2015

Error message is the friend of
attacker!

The page cannot be displayed

There is & problem with the page you are trying to reach and it
cannot be displayed.

Please try the following:

+ Click the Refresh button, or again later,
* Open thdunme page, and them look

for links to the inforration you want,

HTTP S00.100 - Internsl Server Error - ASP arror
Internet Information Services

Technical Information (for support personnel)

-
* Error T]I'p-t! r—l

Microsoft OLE DB Provider for SQL Server (0x30040E14)
Unclosed quotation mark after the character string ' .
. e 14

* Browser Type:
R

* Page:

10/30/2015 Copyright © Ricci IEONG for UST training 2015

How to prevent?

1. Hide the error message!
> Yes it may make the attack harder to perform = “delay” control

> However, it is not impossible = blind SQL injection

2. Sanitizing user provided content
> Filter out / escape special characters like single quotes, and etc, at server side

You need to know the exact set of characters to be filtered out ©

Whitelist approach is always better than blacklist approach

3. Parameterized SQL statement
o Pre-build the SQL statement semantic structure before evaluating the variables

10/30/2015 Copyright © Ricci IEONG for UST training 2015

Parsing with parameterized
variables

- If the target string (e.g. a SQL statement) contains parameterized variable
1. ldentify keywords in the string SX =ABCD’ OR ‘1'="1
2. Split the text strings into tokens and then arrange to the data structure (e.g. tree)

3. Evaluate the variables

SELECT * | FROM @ tablel @ WHERE columl = | ‘SX

10/30/2015 Copyright © Ricci IEONG for UST training 2015

More SQL Injection

- What if error messages are masked / removed?

1. Possibility #1: See if any place can be used to extract values:
o INSERT INTO tablel (c1, c2), values (‘test’, (SELECT c3 FROM table2))

2. Possibility #2: Observe the HTTP status code
o By default return a HTTP 500 when SQL error is occurred

0 If this is

3. Possibility #3: Observe other application specific properties...
° Response time?
Successful queries usually take longer time to complete than failed queries
The difference is more observable if the returned data size is large enough

> Some special actions performed by the application?
Redirect to certain page, e.g. login page?

#2 & #3 - Blind SQL injection

10/30/2015 Copyright © Ricci IEONG for UST training 2015

What can we do with SQL
injection?

1. Retrieve information from database...
° SELECT c1 FROM tablel WHERE id=‘1" UNION SELECT c2 FROM table2;--

2. Retrieve system information

o SELECT c1 FROM tablel WHERE id=‘1" UNION SELECT table_name FROM
information_schema.tables;--’

3. Modify database
o SELECT c1 FROM tablel WHERE id=‘1"; UPDATE tablel SET c1=a’;

4. Execute commands, if the database supports...
o SELECT c1 FROM tablel WHERE id="1"; EXEC xp_cmdshell ‘net user’;--’

5. Many more...
o Cheat Sheets: http://pentestmonkey.net/category/cheat-sheet/sql-injection

Use your creativity!!! ©

10/30/2015 Copyright © Ricci IEONG for UST training 2015

http://pentestmonkey.net/category/cheat-sheet/sql-injection

Lab

BASIC SQL INJECTION AND
COUNTERMEASURES

10/30/2015 Copyright © Ricci IEONG for UST training 2015

Only SQL Injection?

- NO!

- Definition: Change of original semantic structure of by injecting
special characters to cheat the string parser

- Apply to all kinds of parsing:
- E.g. XML Injection, LDAP Injection, etc

10/30/2015 Copyright © Ricci IEONG for UST training 2015

OWASP Top 10 &
Countermeasures

A3 — CROSS-SITE SCRIPTING

HTML & DOM 43 document

5--I*1tr‘r1|

- HTML is ,DGI’Sé’d by rendermg EHTT;mment

engine in browsers into a DOM

tree structure

IEGD‘H www-w3-... w3c_public wic_...
- Can we use |nJeCt|On to Change ~Ftext

the DOM structure of the page? DV w3c_conta..

_ YESI ~Fcomment
DIV wic_footer
~Fcomment
~Fcomment
DIV w3c_scripts

10/30/2015 Copyright © Ricci IEONG for UST training 2015

Cross Site Scripting (XSS)

* Occur whenever an application takes untrusted data and sends it to a
web browser without proper validation and escaping

* Allows attackers to execute scripts in the victim’s browser which can
hijack user sessions, deface web sites, or redirect the user to malicious
sites

* Exploit the trust of user’s browser from the data returned by the server

10/30/2015 Copyright © Ricci IEONG for UST training 2015

Type of XSS

- 3 types of XSS

- Type 0: DOM-based XSS
by directly modifying the DOM structure, e.g.

Cheating the victim to click on the links javascript:alert(‘xss!’)

- Type 1: Reflected XSS

The injected script is at non-persistent value
E.g. URL parameters

- Type 2: Stored XSS / Persistence XSS

The injected script is stored persistently

E.g. database, file, browser cookies

10/30/2015 Copyright © Ricci IEONG for UST training 2015

XSS Illustration

.. 3(b) The script may
Osngmql perform some
erver actions on behalf of
the victim on the ,/’—> Other Servers
1. User access the page other server 7
/a.php?b=test<script>h A (CSRF) S/
ack();</script> l,' I/
1 1
/' 3(a) The script may /
<html> ! perform some :'
...test<script actions on behalf of !
>exploit () ; the victim on the K
</script>... original server (CSRF) o .
</html> L7 3(c) Or the script may
JPtad download malicious
JPPT content to the victim
- oo\ T machine Malicious
2.The |njgcted L R Cemmmmmmmmmmmm s Server
executed in the user €-----==-=--==="
browser v
N 7

3(c) Or the script may change the
DOM content of the page for web
defacement, or other attacks like

phishing

10/30/2015 Copyright © Ricci IEONG for UST training 2015

Common XSS techniques

Directly inject browser content script:

- <script> var x=‘ '</script>

Inject HTML node

- <input type=‘text’ wvalue=‘
">

Inject HTML node (trigger by DOM event)

- <input type=‘text’ wvalue=‘
’
>

Which technique to use depends on situations...

10/30/2015 Copyright © Ricci IEONG for UST training 2015

XSS Challenges

- Sound easy, but really depends on situations...
- When the script should be executed?
order of execution matters (a lot!)

- How to avoid script error after injection?
The DOM structure or the script syntax may be changed

The script may be injected at multiple place at the same time

- No golden rule!

- Be creative! ©

- Practice makes perfect! ©©©

10/30/2015 Copyright © Ricci IEONG for UST training 2015

How to prevent?

1. Golden rule: sanitizing all user provided content
> Filter out / escape special characters like single quotes, and etc
You need to know the exact set of characters to be filtered out ©
Whitelist approach is always better than blacklist approach

o Verify the type of the value is a good idea

2. Minimize the impact of XSS
° Do not store sensitive data in client side
o Limit the access of user script to session cookies (setting the Ht tpOn1ly flag)
o Disable TRACE/TRACK HTTP method that can bypass the Ht tpOnly restriction

o Properly arrange the domain - cookies are restricted to domain only. Separate
sensitive & non-sensitive service into two domain

o Set proper Cross-domain Security Policies

10/30/2015 Copyright © Ricci IEONG for UST training 2015

OWASP Top 10 &
Countermeasures

A8 — CROSS SITE REQUEST FORGERY

Cross-Site Request Forgery (CSRF)

* A CSRF attack forces a logged-on victim’s browser to send a forged
HTTP request, including the victim’s session cookie and any other
automatically included authentication information, to a vulnerable web
application. This allows the attacker to force the victim’s browser to
generate requests the vulnerable application thinks are legitimate

requests from the victim

* Exploit the trust of server on the client

* Usually CSRF is achieved via other vulnerabilities like, XSS

10/30/2015 Copyright © Ricci IEONG for UST training 2015

CSRF Illustration

3. The user’s browser send a
request to)
Originol ebanking.com/transfer.php/,a"> ebonkmg-com
1. User access the page Server with the parameter s
/a.php?b=test<script>h account=1234 ,
ack();</script> I/
II
1
<html> !
...test<script K
>exploit () ;) 4. If the user has log into
</script>... o
</html> /,/

-
-
-
_--
-
-
-

2. The injected script
executed in the user
browser

function exploit () {

load (‘ebanking.com/transfer.php?a
ccount=1234") ;

}

10/30/2015 Copyright © Ricci IEONG for UST training 2015

How to prevent?

1. Check the source of the requests on critical functions
HTTP REFER header
HTTP ORIGIN header

2. Using HTTP POST to submit data add little bit difficulties in exploiting CSRF
than using HTTP GET to submit data

3. Using “CSRF-Tokens”

10/30/2015 Copyright © Ricci IEONG for UST training 2015

Lab

XSS/CSRF ATTACK AND COUNTERMEASURES

10/30/2015 Copyright © Ricci IEONG for UST training 2015

Reference Books

W8, 9: Web Security Guide to Computer Chapter 6: Scripting and

Network Security (2015) Security in Computer
Networks

W8: E-business attack Computer Security Chapter 21: Web-based

scenario, Handbook (2014) Vulnerabilities

W8: web attack

Web Security OWASP web site OWASP Top 10

Injection, XSS attacks Hacking Web Chapter 6 Input Injection

Applications Exposed 3 ~ Attacks

10/30/2015 Copyright © Ricci IEONG for UST training 2015

