
Copyright © Ricci IEONG for UST training 2015

Week 8 – Web 
Application 
Hacking

10/30/2015 1



Copyright © Ricci IEONG for UST training 2015

Web Application 
Security Testing 
Tools

10/30/2015 2



Copyright © Ricci IEONG for UST training 2015

Web Application Security 
Testing Tools

- Two types of security testing tools:
- Active: send out requests and test for vulnerability

- E.g. Web application security scanners

- Passive: Intercept, manipulate or listen to web traffics, and detect for 
- E.g. Web proxies

- May need specific tools in different environment

- Caution!
- No tools are 100% safe

- Applications may not behave normally in security testing due to the their bugs, 
flaws or special feature / logical flow

- Be extra careful when testing in production environment
- Using staging / testing environment, if available, is good for both application owner and security tester

10/30/2015 3



Copyright © Ricci IEONG for UST training 2015

w3af (1)
- Automatic web application scanner

- In both CLI and GUI

- Open Source

- Website: http://w3af.sourceforge.net/

10/30/2015 4

http://w3af.sourceforge.net/


Copyright © Ricci IEONG for UST training 2015

w3af (2)

10/30/2015 5



Copyright © Ricci IEONG for UST training 2015

Fiddler (1)
- “Web debugging proxy” – mainly a passive security testing tool

- Allows user to intercept and manipulate data

- Easily Extendable – you can write your own plugins for enhancement

- Website: http://www.fiddler2.com/fiddler2/

10/30/2015 6

http://www.fiddler2.com/fiddler2/


Copyright © Ricci IEONG for UST training 2015

Fiddler (2)

10/30/2015 7



Copyright © Ricci IEONG for UST training 2015

Other web debugging proxies
- Paros

- ZAP

- Burp suit

- Ratproxy

- OWASP WebScarab

- etc

Features are quite similar: feel free to use your favorite one

10/30/2015 8



Copyright © Ricci IEONG for UST training 2015

Browser plugins
- Manipulates the DOM or traffic in browser

- Easy to use due to the integration of browsing experience

- Both active and passive tools are available

- Example in Firefox
- FireBugs

- HackBar

- WebDeveloper Toolbar

- etc

- Using the “Developer Tools” in modern browsers is also a good idea

- Alternatives also available in other common browsers

10/30/2015 9



Copyright © Ricci IEONG for UST training 2015

IMPORTANT 
NOTES

10/30/2015 10



10/30/2015 11

BE ETHICAL!!!



Copyright © Ricci IEONG for UST training 2015

Do’s and Don’ts 
- Do’s

- DO get written permission from the owner before performing any security tests
- DO stop at mutually agreed point of intrusion, if you can
- DO keep the vulnerability or other sensitive information carefully
- DO report the information to the owner if you find some vulnerability “by 

chance”
- DO know your liability and rights

- Don’ts 
- DON’T publish the vulnerability information without permission of the owner
- DON’T blackmail the owner with what you have
- DON’T think you won’t be traced and caught

You are warned! 

10/30/2015 12



Copyright © Ricci IEONG for UST training 2015

Lab
WARM UP EXERCISE

10/30/2015 13



Copyright © Ricci IEONG for UST training 2015

OWASP Top 10

10/30/2015 14



Copyright © Ricci IEONG for UST training 2015

OWASP Top 10 Web Application 
Security Risk (2007 version)
Open Web Application Security Projects (OWASP) defines Top 10 Web 
Application Security Risks (2007 version):

◦ A1: Cross Site Scripting (XSS)

◦ A2: Injection Flaws

◦ A3: Malicious File Execution

◦ A4: Insecure Direct Object Reference

◦ A5: Cross Site Request Forgery (CSRF)

◦ A6: Information Leakage and Improper Error Handling

◦ A7: Broken Authentication and Session Management

◦ A8: Insecure Cryptographic Storage

◦ A9: Insecure Communication

◦ A10: Failure to Restrict URL Access

10/30/2015 15

Source: https://www.owasp.org/index.php/Top_10_2007



Copyright © Ricci IEONG for UST training 2015

OWASP Top 10 Web Application 
Security Risk (2010 version)
Top 10 Web Application Security Risk 2010 version:

◦ A1: Injection

◦ A2: Cross-site Scripting (XSS)

◦ A3: Broken Authentication and Session Management

◦ A4: Insecure Direct Object References

◦ A5: Cross-site Request Forgery (CSRF)

◦ A6: Secure Misconfiguration

◦ A7: Insecure Cryptographic Storage

◦ A8: Failure to Restrict URL Access

◦ A9: Insufficient Transport Layer Protection

◦ A10: Unvalidated Redirects and Forwards

10/30/2015 16

Source: https://www.owasp.org/index.php/Top_10_2010



Copyright © Ricci IEONG for UST training 2015

OWASP Top 10 Web Application Security Risk 
(2013 version)

Top 10 Web Application Security Risk 2013 release candidate version:
◦ A1: Injection

◦ A2: Broken Authentication and Session Management

◦ A3: Cross-site Scripting (XSS)

◦ A4: Insecure Direct Object References

◦ A5: Secure Misconfiguration

◦ A6: Sensitive Data Exposure

◦ A7: Missing Function Level Access Control

◦ A8: Cross-site Request Forgery (CSRF)

◦ A9: Using Components with Known Vulnerabilities

◦ A10: Unvalidated Redirects and Forwards

10/30/2015 17

Source: https://www.owasp.org/index.php/Top_10_2013



Copyright © Ricci IEONG for UST training 2015

OWASP Top 10 Web Application 
Security Risk (Trend)

10/30/2015 18

2007 version

A1 – Cross Site Scripting (XSS)

A2 – Injection Flaws

A3 – Malicious File Execution

A4 – Insecure Direct Object 
Reference

A5 – Cross Site Request Forgery 
(CSRF)

A6 – Information Leakage and 
Improper Error Handling

A7 – Broken Authentication and 
Session Management

A8 – Insecure Cryptographic 
Storage

A9 – Insecure Communications

A10 – Failure to Restrict URL 
Access

2010 version

A1 – Injection

A2 – Cross Site Scripting

A3 – Broken Authentication and 
Session Management

A4 – Insecure Direct Object 
References

A5 – Cross Site Request Forgery 
(CSRF)

A6 – Security Misconfiguration

A7 – Insecure Cryptographic
Storage

A8 – Failure to Restrict URL 
Access

A9 – Insufficient Transport Layer 
Protection

A10 - Unvalidated Redirects and 
Forwards

New

2013 version

A1 – Injection

A2 – Broken Authentication and 
Session Management

A3 – Cross Site Scripting

A4 – Insecure Direct Object 
References

A5 – Security Misconfiguration

A6 – Sensitive Data Exposure

A7 – Missing Function Level 
Access Control

A8 – Cross Site Request Forgery 
(CSRF)

A9 – Using Components with 
Known Vulnerabilities

A10 - Unvalidated Redirects and 
Forwards

New

New



Copyright © Ricci IEONG for UST training 2015

OWASP Top 10 & 
Countermeasures
A1 – INJECTION

10/30/2015 19



Copyright © Ricci IEONG for UST training 2015

Parsing
- The processing of converting text to data structure representing the object
1. Identify keywords in the string

2. Split the text strings into tokens and then arrange to the data structure (e.g. tree)

- Example:

10/30/2015 20

SELECT * FROM table1 WHERE colum1 = ‘X’



Copyright © Ricci IEONG for UST training 2015

Parsing with variables
- If the target string (e.g. a SQL statement) contains variable…

1. Evaluate the variables

2. Identify keywords in the string

3. Split the text strings into tokens and then arrange to the data structure (e.g. tree)

10/30/2015 21

SELECT * FROM table1 WHERE colum1 = ‘ABCD’‘$X’

$X = ABCD



Copyright © Ricci IEONG for UST training 2015

Problem…
- What if the string contain special “keywords”…?

1. Evaluate the variables

2. Identify keywords in the string

3. Split the text strings into tokens and then arrange to the data structure (e.g. tree)

10/30/2015 22

SELECT * FROM table1 WHERE colum1 = ‘ABCD’‘$X’

$X = ABCD’ OR ‘1’=‘1

OR ‘1’ = ‘1’



Copyright © Ricci IEONG for UST training 2015

Injection Flaw

• Occur when untrusted data is sent to an interpreter as part of a 
command or query. The attacker’s hostile data can trick the interpreter 
into executing unintended commands or accessing unauthorized data

•Definition: Change of original semantic structure of by injecting special 
characters to cheat the string parser

•Most common injections: SQL Injection

10/30/2015 23



Copyright © Ricci IEONG for UST training 2015

SQL Injection
•Example

• SELECT * FROM user_table WHERE username=‘$username’ AND password=‘$password’;

• case (1): $usernmae userA, $password  abc123:

• SELECT * FROM user_table WHERE username=‘userA’ AND password=‘abc123’;

• case (2): $usernmae userA, $password  a’ OR ‘’=‘:

• SELECT * FROM user_table WHERE username=‘userA’ AND password=‘a’ OR ‘’=‘’;

• Injection!

10/30/2015 24



Copyright © Ricci IEONG for UST training 2015

SQL Injection
SELECT *

FROM user_table

WHERE 

Username=‘userA’

AND password=‘a’

OR ‘’=‘’;

10/30/2015 25

userA

a’ OR ‘’=‘$password 

$username 



Copyright © Ricci IEONG for UST training 2015

SQL Injection

Original:

10/30/2015 26

SELECT

*

FROM

table1

WHERE

Username

=

‘XXX’

AND

password

=

‘XXX’



Copyright © Ricci IEONG for UST training 2015

SQL Injection

Injected:

10/30/2015 27

SELECT

*

FROM

table1

WHERE

Username

=

‘userA’

AND

password

=

‘a’

‘’

=

‘’

OR Always true!



Copyright © Ricci IEONG for UST training 2015

Stacked SQL statements
- Some SQL engine support “stacked” statements when running a query.

- E.g. 

SELECT * FROM table1; INSERT INTO table1 (column1) VALUES (‘1’);

is equivalent to running two queries separately

SELECT * FROM table1;
INSERT INTO table1 (column1) VALUES (‘1’);

- The impact of SQL injection can be even more harmful

10/30/2015 28



Copyright © Ricci IEONG for UST training 2015

Source: http://xkcd.com/327/

10/30/2015 29



Copyright © Ricci IEONG for UST training 2015

SQL Injection 101
- However, external parties (attacker and black box pen tester) may not 

know the exact SQL statement used in the the application

- Question: How to find out a “correct” injection to the SQL statement?

- Possibilities:
1. Trial and error!

2. Testing some “magic” strings that usually works
◦ ‘ or ‘’=‘’; --

◦ or 1=1;--

◦ etc

3. By observing error messages returned by the applications

10/30/2015 30



Copyright © Ricci IEONG for UST training 2015

Error message is the friend of 
attacker!

10/30/2015 31



Copyright © Ricci IEONG for UST training 2015

How to prevent?
1. Hide the error message!

◦ Yes it may make the attack harder to perform  “delay” control

◦ However, it is not impossible  blind SQL injection

2. Sanitizing user provided content
◦ Filter out / escape special characters like single quotes, and etc, at server side

◦ You need to know the exact set of characters to be filtered out 

◦ Whitelist approach is always better than blacklist approach

3. Parameterized SQL statement
◦ Pre-build the SQL statement semantic structure before evaluating the variables

10/30/2015 32



Copyright © Ricci IEONG for UST training 2015

Parsing with parameterized 
variables

- If the target string (e.g. a SQL statement) contains parameterized variable…
1. Identify keywords in the string

2. Split the text strings into tokens and then arrange to the data structure (e.g. tree)

3. Evaluate the variables

10/30/2015 33

SELECT * FROM table1 WHERE colum1 =

‘ABCD’ OR 1=1’

‘$X’

$X = ABCD’ OR ‘1’=‘1



Copyright © Ricci IEONG for UST training 2015

More SQL Injection
- What if error messages are masked / removed?

1. Possibility #1: See if any place can be used to extract values:
◦ INSERT INTO table1 (c1, c2), values (‘test’, (SELECT c3 FROM table2))

2. Possibility #2: Observe the HTTP status code
◦ By default return a HTTP 500 when SQL error is occurred
◦ If this is 

3. Possibility #3: Observe other application specific properties…
◦ Response time?

◦ Successful queries usually take longer time to complete than failed queries

◦ The difference is more observable if the returned data size is large enough

◦ Some special actions performed by the application?
◦ Redirect to certain page, e.g. login page?

#2 & #3  Blind SQL injection

10/30/2015 34



Copyright © Ricci IEONG for UST training 2015

What can we do with SQL 
injection?

1. Retrieve information from database…
◦ SELECT c1 FROM table1 WHERE id=‘1’ UNION SELECT c2 FROM table2;--’

2. Retrieve system information
◦ SELECT c1 FROM table1 WHERE id=‘1’ UNION SELECT table_name FROM 

information_schema.tables;--’

3. Modify database
◦ SELECT c1 FROM table1 WHERE id=‘1’; UPDATE table1 SET c1=‘a’;

4. Execute commands, if the database supports…
◦ SELECT c1 FROM table1 WHERE id=‘1’; EXEC xp_cmdshell ‘net user’;--’

5. Many more…
◦ Cheat Sheets: http://pentestmonkey.net/category/cheat-sheet/sql-injection

Use your creativity!!! 

10/30/2015 35

http://pentestmonkey.net/category/cheat-sheet/sql-injection


Copyright © Ricci IEONG for UST training 2015

Lab
BASIC SQL INJECTION AND 
COUNTERMEASURES

10/30/2015 36



Copyright © Ricci IEONG for UST training 2015

Only SQL Injection?
- NO!

- Definition: Change of original semantic structure of by injecting 
special characters to cheat the string parser

- Apply to all kinds of parsing:
- E.g. XML Injection, LDAP Injection, etc

10/30/2015 37



Copyright © Ricci IEONG for UST training 2015

OWASP Top 10 & 
Countermeasures
A3 – CROSS-SITE SCRIPTING

10/30/2015 38



Copyright © Ricci IEONG for UST training 2015

HTML & DOM
- HTML is parsed by rendering 

engine in browsers into a DOM 
tree structure

- Can we use injection to change 
the DOM structure of the page?

- YES!

10/30/2015 39



Copyright © Ricci IEONG for UST training 2015

Cross Site Scripting (XSS)

• Occur whenever an application takes untrusted data and sends it to a 

web browser without proper validation and escaping

• Allows attackers to execute scripts in the victim’s browser which can 

hijack user sessions, deface web sites, or redirect the user to malicious 

sites

• Exploit the trust of user’s browser from the data returned by the server

10/30/2015 40



Copyright © Ricci IEONG for UST training 2015

Type of XSS

- 3 types of XSS
- Type 0: DOM-based XSS

- by directly modifying the DOM structure, e.g.

- Cheating the victim to click on the links javascript:alert(‘xss!’)

- Type 1: Reflected XSS
- The injected script is at non-persistent value

- E.g. URL parameters

- Type 2: Stored XSS / Persistence XSS
- The injected script is stored persistently

- E.g. database, file, browser cookies

10/30/2015 41



Copyright © Ricci IEONG for UST training 2015

XSS Illustration

10/30/2015 42

Original 
Server

Other Servers

<html>

...test<script

>exploit();

</script>...

</html>

1. User access  the page 
/a.php?b=test<script>h
ack();</script>

2. The injected script 
executed in the user 
browser

3(a) The script may 
perform some 
actions on behalf of 
the victim on the 
original server (CSRF)

3(b) The script may 
perform some 
actions on behalf of 
the victim on the 
other server
(CSRF)

3(c) Or the script may 
download malicious 
content to the victim 
machine Malicious 

Server

3(c) Or the script may change the 
DOM content of the page for web 
defacement, or other attacks like 
phishing



Copyright © Ricci IEONG for UST training 2015

Common XSS techniques
- Directly inject browser content script:
- <script> var x=‘test’;exploit();var x=‘test’</script>

- Inject HTML node
- <input type=‘text’ value=‘test’><script>exploit()</script><img

src=‘’>

- Inject HTML node (trigger by DOM event)
- <input type=‘text’ value=‘test’><img src=‘notexist’ 

onerror=‘javascript:exploit()’>

- Which technique to use depends on situations…

10/30/2015 43



Copyright © Ricci IEONG for UST training 2015

XSS Challenges
- Sound easy, but really depends on situations…

- When the script should be executed?
- order of execution matters (a lot!)

- How to avoid script error after injection?
- The DOM structure or the script syntax may be changed

- The script may be injected at multiple place at the same time

- No golden rule!

- Be creative! 

- Practice makes perfect! 

10/30/2015 44



Copyright © Ricci IEONG for UST training 2015

How to prevent?
1. Golden rule: sanitizing all user provided content

◦ Filter out / escape special characters like single quotes, and etc
◦ You need to know the exact set of characters to be filtered out 

◦ Whitelist approach is always better than blacklist approach

◦ Verify the type of the value is a good idea

2. Minimize the impact of XSS
◦ Do not store sensitive data in client side

◦ Limit the access of user script to session cookies (setting the HttpOnly flag)

◦ Disable TRACE/TRACK HTTP method that can bypass the HttpOnly restriction

◦ Properly arrange the domain - cookies are restricted to domain only. Separate 
sensitive & non-sensitive service into two domain

◦ Set proper Cross-domain Security Policies

10/30/2015 45



Copyright © Ricci IEONG for UST training 2015

OWASP Top 10 & 
Countermeasures
A8 – CROSS SITE REQUEST FORGERY

10/30/2015 46



Copyright © Ricci IEONG for UST training 2015

Cross-Site Request Forgery (CSRF)

• A CSRF attack forces a logged-on victim’s browser to send a forged 

HTTP request, including the victim’s session cookie and any other 

automatically included authentication information, to a vulnerable web 

application. This allows the attacker to force the victim’s browser to 

generate requests the vulnerable application thinks are legitimate 

requests from the victim

• Exploit the trust of server on the client

• Usually CSRF is achieved via other vulnerabilities like, XSS

10/30/2015 47



Copyright © Ricci IEONG for UST training 2015

CSRF Illustration

10/30/2015 48

Original 
Server

ebanking.com

<html>

...test<script

>exploit();

</script>...

</html>

1. User access  the page 
/a.php?b=test<script>h
ack();</script>

2. The injected script 
executed in the user 
browser

3. The user’s browser send a 
request to 
ebanking.com/transfer.php
with the parameter 
account=1234

function exploit() {

load(‘ebanking.com/transfer.php?a

ccount=1234’);

}

4. If the user has log into 



Copyright © Ricci IEONG for UST training 2015

How to prevent?
1. Check the source of the requests on critical functions

◦ HTTP REFER header

◦ HTTP ORIGIN header

2. Using HTTP POST to submit data add little bit difficulties in exploiting CSRF 
than using HTTP GET to submit data

3. Using “CSRF-Tokens”

10/30/2015 49



Copyright © Ricci IEONG for UST training 2015

Lab
XSS/CSRF ATTACK AND COUNTERMEASURES

10/30/2015 50



Copyright © Ricci IEONG for UST training 2015

Reference Books
Related Content Book Chapter

W8, 9: Web Security Guide to Computer 
Network Security (2015)

Chapter 6: Scripting and 
Security in Computer 
Networks

W8: E-business attack 
scenario,
W8: web attack

Computer Security 
Handbook (2014)

Chapter 21: Web-based 
Vulnerabilities

Web Security OWASP web site OWASP Top 10

Injection, XSS attacks Hacking Web 
Applications Exposed 3

Chapter 6 Input Injection 
Attacks

10/30/2015 51


